40 research outputs found

    Voltage-Current curves for small Josephson junction arrays

    Full text link
    We compute the current voltage characteristic of a chain of identical Josephson circuits characterized by a large ratio of Josephson to charging energy that are envisioned as the implementation of topologically protected qubits. We show that in the limit of small coupling to the environment it exhibits a non-monotonous behavior with a maximum voltage followed by a parametrically large region where V1/IV\propto 1/I. We argue that its experimental measurement provides a direct probe of the amplitude of the quantum transitions in constituting Josephson circuits and thus allows their full characterization.Comment: 12 pages, 4 figure

    Quantum two level systems and Kondo-like traps as possible sources of decoherence in superconducting qubits

    Full text link
    We discuss the origin of decoherence in Josephson junction qubits. We find that two level systems in the surrounding insulator cannot be the dominant source of noise in small qubits. We argue that electron traps in the Josephson barrier with large Coulomb repulsion would give noise that agrees both in magnitude and in temperature dependence with experimental data.Comment: 4 pages, no figure

    Microscopic model of quantum butterfly effect: out-of-time-order correlators and traveling combustion waves

    Full text link
    We extend the Keldysh technique to enable the computation of out-of-time order correlators. We show that the behavior of these correlators is described by equations that display initially an exponential instability which is followed by a linear propagation of the decoherence between two initially identically copies of the quantum many body systems with interactions. At large times the decoherence propagation (quantum butterfly effect) is described by a diffusion equation with non-linear dissipation known in the theory of combustion waves. The solution of this equation is a propagating non-linear wave moving with constant velocity despite the diffusive character of the underlying dynamics. Our general conclusions are illustrated by the detailed computations for the specific models describing the electrons interacting with bosonic degrees of freedom (phonons, two-level-systems etc.) or with each other

    Microscopic origin of low frequency flux noise in Josephson circuits

    Full text link
    We analyze the data and discuss their implications for the microscopic origin of the low frequency flux noise in superconducting circuits. We argue that this noise is produced by spins at the superconductor insulator boundary whose dynamics is due to RKKY interaction. We show that this mechanism explains size independence of the noise, different frequency dependences of the spectra reported in large and small SQUIDs and gives the correct intensity for realistic parameters.Comment: 4 pages, no figure

    Quasiparticle poisoning and Josephson current fluctuations induced by Kondo impurities

    Get PDF
    We introduce a toy model that allows us to study the physical properties of a spin impurity coupled to the electrons in the superconducting island. We show that when the coupling of the spin is of the order of the superconducting gap two almost degenerate subgap states are formed. By computing the Berry phase that is associated with the superconducting phase rotations in this model, we prove that these subgap states are characterized by a different charge and demonstrate that the switching between these states has the same effect as quasiparticle poisoning (unpoisoning) of the island. We also show that an impurity coupled to both the island and the lead generates Josepshon current fluctuations.Comment: 5 pages, 1 figur
    corecore